skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tamborski, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The tidal tributaries of the lower Chesapeake Bay experience seasonally recurring harmful algal blooms and the significance of submarine groundwater discharge (SGD) as a nutrient vector is largely unknown. Here, we determined seasonal SGD nutrient loads in two tributaries with contrasting hydrodynamic conditions, river‐fed (York River) vs. tidally dominated (Lafayette River). Radon surveys were performed in each river to quantify SGD at the embayment‐scale during spring and fall 2021. Total SGD was determined from a222Rn mass balance and Monte Carlo simulations. Submarine groundwater discharge rates differed by a factor of two during spring (Lafayette = 11 ± 17 cm d−1; York = 6 ± 10 cm d−1) and a factor of six during fall (Lafayette = 19 ± 27 cm d−1; York = 3 ± 7 cm d−1). Groundwater N concentrations and fluxes varied seasonally in the York (4–7 mmol N m−2d−1). In the Lafayette River, seasonal N fluxes (22–37 mmol N m−2d−1) were driven by seasonal water exchange rates, likely due to recurrent saltwater intrusion. Submarine groundwater discharge–derived nutrient fluxes were orders of magnitude greater than riverine inputs and runoff in each system. Additionally, sediment N removal by denitrification and anaerobic ammonium oxidation would only remove ~ 1–11% of dissolved inorganic nitrogen supplied through SGD. The continued recurrence of harmful algal blooms in the Bay's tidal tributaries may be indicative of an under‐accounting of submarine groundwater‐borne nutrient sources. This study highlights the importance of including SGD in water quality models used to advise restoration efforts in the Chesapeake Bay region and beyond. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Concentrations of inorganic dissolved macronutrients, including phosphate, nitrate plus nitrite (N+N), silicic acid, and nitrite, from phytoplankton shipboard incubation experiments and depth profiles collected on STING I cruise AE2305 on R/V Atlantic Explorer in the Gulf of Mexico from February to March 2023. This project investigates how groundwater discharge delivers important nutrients to the coastal ecosystems of the West Florida Shelf. Preliminary studies indicate that groundwater may supply both dissolved organic nitrogen (DON) and iron in this region. In coastal ecosystems like the West Florida Shelf that have very low nitrate and ammonium concentrations, DON is the main form of nitrogen available to organisms. Nitrogen cycling is strongly affected by iron availability because iron is essential for both photosynthesis and for nitrogen fixation. This study will investigate the sources and composition of DON and iron, and their influence on the coastal ecosystem. The team will sample offshore groundwater wells, river and estuarine waters, and conduct two expeditions across the West Florida Shelf in winter and summer. 
    more » « less
  3. null (Ed.)
    Loss of tidal wetlands is a world-wide phenomenon. Many factors may contribute to such loss, but among them are geochemical stressors such as exposure of the marsh plants to elevated levels on hydrogen sulfide in the pore water of the marsh peat. Here we report the results of a study of the geochemistry of iron and sulfide at different seasons in unrestored (JoCo) and partially restored (Big Egg) salt marshes in Jamaica Bay, a highly urbanized estuary in New York City where the loss of salt marsh area has accelerated in recent years. The spatial and temporal 2-dimensional distribution patterns of dissolved Fe 2+ and H 2 S in salt marshes were in situ mapped with high resolution planar sensors for the first time. The vertical profiles of Fe 2+ and hydrogen sulfide, as well as related solutes and redox potentials in marsh were also evaluated by sampling the pore water at discrete depths. Sediment cores were collected at various seasons and the solid phase Fe, S, N, C, and chromium reducible sulfide in marsh peat at discrete depths were further investigated in order to study Fe and S cycles, and their relationship to the organic matter cycling at different seasons. Our results revealed that the redox sensitive elements Fe 2+ and S 2– showed significantly heterogeneous and complex three dimensional distribution patterns in salt marsh, over mm to cm scales, directly associated with the plant roots due to the oxygen leakage from roots and redox diagenetic reactions. We hypothesize that the oxic layers with low/undetected H 2 S and Fe 2+ formed around roots help marsh plants to survive in the high levels of H 2 S by reducing sulfide absorption. The overall concentrations of Fe 2+ and H 2 S and distribution patterns also seasonally varied with temperature change. H 2 S level in JoCo sampling site could change from <0.02 mM in spring to >5 mM in fall season, reflecting significantly seasonal variation in the rates of bacterial oxidation of organic matter at this marsh site. Solid phase Fe and S showed that very high fractions of the diagenetically reactive iron at JoCo and Big Egg were associated with pyrite that can persist for long periods in anoxic sediments. This implies that there is insufficient diagenetically reactive iron to buffer the pore water hydrogen sulfide through formation of iron sulfides at JoCo and Big Egg. 
    more » « less
  4. Abstract Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr−1for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans. 
    more » « less